Mister Exam

Other calculators

Integral of 1/(x+y+1) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2             
  /             
 |              
 |      1       
 |  --------- dy
 |  x + y + 1   
 |              
/               
1               
$$\int\limits_{1}^{2} \frac{1}{\left(x + y\right) + 1}\, dy$$
Integral(1/(x + y + 1), (y, 1, 2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of is .

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                 
 |                                  
 |     1                            
 | --------- dy = C + log(x + y + 1)
 | x + y + 1                        
 |                                  
/                                   
$$\int \frac{1}{\left(x + y\right) + 1}\, dy = C + \log{\left(\left(x + y\right) + 1 \right)}$$
The answer [src]
-log(2 + x) + log(3 + x)
$$- \log{\left(x + 2 \right)} + \log{\left(x + 3 \right)}$$
=
=
-log(2 + x) + log(3 + x)
$$- \log{\left(x + 2 \right)} + \log{\left(x + 3 \right)}$$
-log(2 + x) + log(3 + x)

    Use the examples entering the upper and lower limits of integration.