Mister Exam

Other calculators

Integral of 1/((x+2)(ln(x+2))^4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |             4          
 |  (x + 2)*log (x + 2)   
 |                        
/                         
1                         
$$\int\limits_{1}^{\infty} \frac{1}{\left(x + 2\right) \log{\left(x + 2 \right)}^{4}}\, dx$$
Integral(1/((x + 2)*log(x + 2)^4), (x, 1, oo))
The answer (Indefinite) [src]
  /                                          
 |                                           
 |          1                         1      
 | ------------------- dx = C - -------------
 |            4                      3       
 | (x + 2)*log (x + 2)          3*log (2 + x)
 |                                           
/                                            
$$\int \frac{1}{\left(x + 2\right) \log{\left(x + 2 \right)}^{4}}\, dx = C - \frac{1}{3 \log{\left(x + 2 \right)}^{3}}$$
The graph
The answer [src]
    1    
---------
     3   
3*log (3)
$$\frac{1}{3 \log{\left(3 \right)}^{3}}$$
=
=
    1    
---------
     3   
3*log (3)
$$\frac{1}{3 \log{\left(3 \right)}^{3}}$$
1/(3*log(3)^3)

    Use the examples entering the upper and lower limits of integration.