Mister Exam

Other calculators

Integral of ((1/(x+4))+sqrt(2x-3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |  /  1       _________\   
 |  |----- + \/ 2*x - 3 | dx
 |  \x + 4              /   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \left(\sqrt{2 x - 3} + \frac{1}{x + 4}\right)\, dx$$
Integral(1/(x + 4) + sqrt(2*x - 3), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is when :

        So, the result is:

      Now substitute back in:

    1. Let .

      Then let and substitute :

      1. The integral of is .

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                         3/2             
 | /  1       _________\          (2*x - 3)                
 | |----- + \/ 2*x - 3 | dx = C + ------------ + log(x + 4)
 | \x + 4              /               3                   
 |                                                         
/                                                          
$$\int \left(\sqrt{2 x - 3} + \frac{1}{x + 4}\right)\, dx = C + \frac{\left(2 x - 3\right)^{\frac{3}{2}}}{3} + \log{\left(x + 4 \right)}$$
The graph
The answer [src]
          I       ___         
-log(4) - - + I*\/ 3  + log(5)
          3                   
$$- \log{\left(4 \right)} + \log{\left(5 \right)} - \frac{i}{3} + \sqrt{3} i$$
=
=
          I       ___         
-log(4) - - + I*\/ 3  + log(5)
          3                   
$$- \log{\left(4 \right)} + \log{\left(5 \right)} - \frac{i}{3} + \sqrt{3} i$$
-log(4) - i/3 + i*sqrt(3) + log(5)
Numerical answer [src]
(0.22314355131421 + 1.39871747423554j)
(0.22314355131421 + 1.39871747423554j)

    Use the examples entering the upper and lower limits of integration.