1 / | | / 1 _________\ | |----- + \/ 2*x - 3 | dx | \x + 4 / | / 0
Integral(1/(x + 4) + sqrt(2*x - 3), (x, 0, 1))
Integrate term-by-term:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is when :
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | 3/2 | / 1 _________\ (2*x - 3) | |----- + \/ 2*x - 3 | dx = C + ------------ + log(x + 4) | \x + 4 / 3 | /
I ___ -log(4) - - + I*\/ 3 + log(5) 3
=
I ___ -log(4) - - + I*\/ 3 + log(5) 3
-log(4) - i/3 + i*sqrt(3) + log(5)
(0.22314355131421 + 1.39871747423554j)
(0.22314355131421 + 1.39871747423554j)
Use the examples entering the upper and lower limits of integration.