Mister Exam

Other calculators

Integral of 1/(x*√(x^2+x-3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |            1           
 |  1*----------------- dx
 |         ____________   
 |        /  2            
 |    x*\/  x  + x - 3    
 |                        
/                         
0                         
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \sqrt{x^{2} + x - 3}}\, dx$$
The answer (Indefinite) [src]
  /                               /                     
 |                               |                      
 |           1                   |         1            
 | 1*----------------- dx = C +  | ------------------ dx
 |        ____________           |      _____________   
 |       /  2                    |     /           2    
 |   x*\/  x  + x - 3            | x*\/  -3 + x + x     
 |                               |                      
/                               /                       
$${{\arcsin \left({{x}\over{\sqrt{13}\,\left| x\right| }}-{{6}\over{ \sqrt{13}\,\left| x\right| }}\right)}\over{\sqrt{3}}}$$
The answer [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /           2    
 |  x*\/  -3 + x + x     
 |                       
/                        
0                        
$$0$$
=
=
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /           2    
 |  x*\/  -3 + x + x     
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{x^{2} + x - 3}}\, dx$$
Numerical answer [src]
(0.0 - 25.6571682014014j)
(0.0 - 25.6571682014014j)

    Use the examples entering the upper and lower limits of integration.