Mister Exam

Other calculators

Integral of 1/(x*sqrt(x)*sqrt(x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |          1           
 |  ----------------- dx
 |      ___   _______   
 |  x*\/ x *\/ x + 1    
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x} x \sqrt{x + 1}}\, dx$$
Integral(1/((x*sqrt(x))*sqrt(x + 1)), (x, 0, 1))
The answer (Indefinite) [src]
                              //      2*I                1       \
                              ||----------------  for ------- > 1|
                              ||    ____________      |1 + x|    |
  /                           ||   /        1                    |
 |                            ||  /  -1 + -----                  |
 |         1                  ||\/        1 + x                  |
 | ----------------- dx = C + |<                                 |
 |     ___   _______          ||      -2                         |
 | x*\/ x *\/ x + 1           ||---------------      otherwise   |
 |                            ||    ___________                  |
/                             ||   /       1                     |
                              ||  /  1 - -----                   |
                              \\\/       1 + x                   /
$$\int \frac{1}{\sqrt{x} x \sqrt{x + 1}}\, dx = C + \begin{cases} \frac{2 i}{\sqrt{-1 + \frac{1}{x + 1}}} & \text{for}\: \frac{1}{\left|{x + 1}\right|} > 1 \\- \frac{2}{\sqrt{1 - \frac{1}{x + 1}}} & \text{otherwise} \end{cases}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
7464448596.82806
7464448596.82806

    Use the examples entering the upper and lower limits of integration.