Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 1/(2+x^2) Integral of 1/(2+x^2)
  • Integral of x/(x^3-3x+2)
  • Integral of -x+4 Integral of -x+4
  • Integral of 8/x^2 Integral of 8/x^2
  • Identical expressions

  • one /(x*sqrt(ln^2x+ four))
  • 1 divide by (x multiply by square root of (ln squared x plus 4))
  • one divide by (x multiply by square root of (ln squared x plus four))
  • 1/(x*√(ln^2x+4))
  • 1/(x*sqrt(ln2x+4))
  • 1/x*sqrtln2x+4
  • 1/(x*sqrt(ln²x+4))
  • 1/(x*sqrt(ln to the power of 2x+4))
  • 1/(xsqrt(ln^2x+4))
  • 1/(xsqrt(ln2x+4))
  • 1/xsqrtln2x+4
  • 1/xsqrtln^2x+4
  • 1 divide by (x*sqrt(ln^2x+4))
  • 1/(x*sqrt(ln^2x+4))dx
  • Similar expressions

  • 1/(x*sqrt(ln^2x-4))

Integral of 1/(x*sqrt(ln^2x+4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /    2           
 |  x*\/  log (x) + 4    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{\log{\left(x \right)}^{2} + 4}}\, dx$$
Integral(1/(x*sqrt(log(x)^2 + 4)), (x, 0, 1))
The answer (Indefinite) [src]
  /                              /                     
 |                              |                      
 |         1                    |         1            
 | ------------------ dx = C +  | ------------------ dx
 |      _____________           |      _____________   
 |     /    2                   |     /        2       
 | x*\/  log (x) + 4            | x*\/  4 + log (x)    
 |                              |                      
/                              /                       
$$\int \frac{1}{x \sqrt{\log{\left(x \right)}^{2} + 4}}\, dx = C + \int \frac{1}{x \sqrt{\log{\left(x \right)}^{2} + 4}}\, dx$$
The answer [src]
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /        2       
 |  x*\/  4 + log (x)    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{\log{\left(x \right)}^{2} + 4}}\, dx$$
=
=
  1                      
  /                      
 |                       
 |          1            
 |  ------------------ dx
 |       _____________   
 |      /        2       
 |  x*\/  4 + log (x)    
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{\log{\left(x \right)}^{2} + 4}}\, dx$$
Integral(1/(x*sqrt(4 + log(x)^2)), (x, 0, 1))
Numerical answer [src]
3.78676731766762
3.78676731766762

    Use the examples entering the upper and lower limits of integration.