Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of x^(-1/2) Integral of x^(-1/2)
  • Integral of 1-7*x^2 Integral of 1-7*x^2
  • Integral of y^(-2/3) Integral of y^(-2/3)
  • Integral of xe^(1-x) Integral of xe^(1-x)
  • Identical expressions

  • one /(x*sqrt(four -9ln^2x))
  • 1 divide by (x multiply by square root of (4 minus 9ln squared x))
  • one divide by (x multiply by square root of (four minus 9ln squared x))
  • 1/(x*√(4-9ln^2x))
  • 1/(x*sqrt(4-9ln2x))
  • 1/x*sqrt4-9ln2x
  • 1/(x*sqrt(4-9ln²x))
  • 1/(x*sqrt(4-9ln to the power of 2x))
  • 1/(xsqrt(4-9ln^2x))
  • 1/(xsqrt(4-9ln2x))
  • 1/xsqrt4-9ln2x
  • 1/xsqrt4-9ln^2x
  • 1 divide by (x*sqrt(4-9ln^2x))
  • 1/(x*sqrt(4-9ln^2x))dx
  • Similar expressions

  • 1/(x*sqrt(4+9ln^2x))

Integral of 1/(x*sqrt(4-9ln^2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                          
  /                          
 |                           
 |             1             
 |  1*-------------------- dx
 |         _______________   
 |        /          2       
 |    x*\/  4 - 9*log (x)    
 |                           
/                            
0                            
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \sqrt{4 - 9 \log{\left(x \right)}^{2}}}\, dx$$
Integral(1/(x*sqrt(4 - 9*log(x)^2)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                  /                                        
 |                                  |                                         
 |            1                     |                   1                     
 | 1*-------------------- dx = C +  | ------------------------------------- dx
 |        _______________           |     _________________________________   
 |       /          2               | x*\/ -(-2 + 3*log(x))*(2 + 3*log(x))    
 |   x*\/  4 - 9*log (x)            |                                         
 |                                 /                                          
/                                                                             
$${{\arcsin \left({{3\,\log x}\over{2}}\right)}\over{3}}$$
The answer [src]
  1                                         
  /                                         
 |                                          
 |                    1                     
 |  ------------------------------------- dx
 |      _________________________________   
 |  x*\/ -(-2 + 3*log(x))*(2 + 3*log(x))    
 |                                          
/                                           
0                                           
$${\it \%a}$$
=
=
  1                                         
  /                                         
 |                                          
 |                    1                     
 |  ------------------------------------- dx
 |      _________________________________   
 |  x*\/ -(-2 + 3*log(x))*(2 + 3*log(x))    
 |                                          
/                                           
0                                           
$$\int\limits_{0}^{1} \frac{1}{x \sqrt{- \left(3 \log{\left(x \right)} - 2\right) \left(3 \log{\left(x \right)} + 2\right)}}\, dx$$
Numerical answer [src]
(0.464164876073221 - 1.70374508359369j)
(0.464164876073221 - 1.70374508359369j)

    Use the examples entering the upper and lower limits of integration.