Integral of 1/x*(lnx)⁸ dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=x1.
Then let du=−x2dx and substitute −du:
∫(−ulog(u1)8)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫ulog(u1)8du=−∫ulog(u1)8du
-
Let u=log(u1).
Then let du=−udu and substitute −du:
∫(−u8)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u8du=−∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
So, the result is: −9u9
Now substitute u back in:
−9log(u1)9
So, the result is: 9log(u1)9
Now substitute u back in:
9log(x)9
Method #2
-
Let u=log(x).
Then let du=xdx and substitute du:
∫u8du
-
The integral of un is n+1un+1 when n=−1:
∫u8du=9u9
Now substitute u back in:
9log(x)9
-
Add the constant of integration:
9log(x)9+constant
The answer is:
9log(x)9+constant
The answer (Indefinite)
[src]
/
|
| 8 9
| log (x) log (x)
| ------- dx = C + -------
| x 9
|
/
∫xlog(x)8dx=C+9log(x)9
The graph
Use the examples entering the upper and lower limits of integration.