Mister Exam

Other calculators

Integral of 1/(x*ln(x)-x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |         1         
 |  1*------------ dx
 |    x*log(x) - x   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{x \log{\left(x \right)} - x}\, dx$$
Integral(1/(x*log(x) - x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                        
 |                                         
 |        1                                
 | 1*------------ dx = C + log(-1 + log(x))
 |   x*log(x) - x                          
 |                                         
/                                          
$$\log \left(\log x-1\right)$$
The answer [src]
-oo + pi*I
$${\it \%a}$$
=
=
-oo + pi*I
$$-\infty + i \pi$$
Numerical answer [src]
-3.8086801542316
-3.8086801542316

    Use the examples entering the upper and lower limits of integration.