Mister Exam

Other calculators

Integral of 1/(x*(ln^4*x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |      1       
 |  --------- dx
 |       4      
 |  x*log (x)   
 |              
/               
0               
$$\int\limits_{0}^{1} \frac{1}{x \log{\left(x \right)}^{4}}\, dx$$
Integral(1/(x*log(x)^4), (x, 0, 1))
The answer (Indefinite) [src]
  /                            
 |                             
 |     1                  1    
 | --------- dx = C - ---------
 |      4                  3   
 | x*log (x)          3*log (x)
 |                             
/                              
$$\int \frac{1}{x \log{\left(x \right)}^{4}}\, dx = C - \frac{1}{3 \log{\left(x \right)}^{3}}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
7.82959388416138e+56
7.82959388416138e+56

    Use the examples entering the upper and lower limits of integration.