Integral of 1/(x*(ln^2x+16)) dx
The solution
The answer (Indefinite)
[src]
/
|
| 1 / 2 \
| ---------------- dx = C + RootSum\64*z + 1, i -> i*log(32*i + log(x))/
| / 2 \
| x*\log (x) + 16/
|
/
∫x(log(x)2+16)1dx=C+RootSum(64z2+1,(i↦ilog(32i+log(x))))
The graph
1
/
|
| 1
| ---------------- dx
| / 2 \
| x*\16 + log (x)/
|
/
0
0∫1x(log(x)2+16)1dx
=
1
/
|
| 1
| ---------------- dx
| / 2 \
| x*\16 + log (x)/
|
/
0
0∫1x(log(x)2+16)1dx
Integral(1/(x*(16 + log(x)^2)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.