Mister Exam

Other calculators

Integral of 1/(x-9)sqrtx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4         
  /         
 |          
 |    ___   
 |  \/ x    
 |  ----- dx
 |  x - 9   
 |          
/           
1           
$$\int\limits_{1}^{4} \frac{\sqrt{x}}{x - 9}\, dx$$
Integral(sqrt(x)/(x - 9), (x, 1, 4))
The answer (Indefinite) [src]
  /                                                             
 |                                                              
 |   ___                                                        
 | \/ x                /      ___\       ___        /       ___\
 | ----- dx = C - 3*log\3 + \/ x / + 2*\/ x  + 3*log\-3 + \/ x /
 | x - 9                                                        
 |                                                              
/                                                               
$$\int \frac{\sqrt{x}}{x - 9}\, dx = C + 2 \sqrt{x} + 3 \log{\left(\sqrt{x} - 3 \right)} - 3 \log{\left(\sqrt{x} + 3 \right)}$$
The graph
The answer [src]
2 - 3*log(2) - 3*log(5) + 3*log(4)
$$- 3 \log{\left(5 \right)} - 3 \log{\left(2 \right)} + 2 + 3 \log{\left(4 \right)}$$
=
=
2 - 3*log(2) - 3*log(5) + 3*log(4)
$$- 3 \log{\left(5 \right)} - 3 \log{\left(2 \right)} + 2 + 3 \log{\left(4 \right)}$$
2 - 3*log(2) - 3*log(5) + 3*log(4)
Numerical answer [src]
-0.748872195622465
-0.748872195622465

    Use the examples entering the upper and lower limits of integration.