Mister Exam

Other calculators

Integral of 1/(((x-4)^2)+4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |         2       
 |  (x - 4)  + 4   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(x - 4\right)^{2} + 4}\, dx$$
Integral(1/((x - 4)^2 + 4), (x, 0, 1))
The answer (Indefinite) [src]
  /                          /     x\
 |                       atan|-2 + -|
 |      1                    \     2/
 | ------------ dx = C + ------------
 |        2                   2      
 | (x - 4)  + 4                      
 |                                   
/                                    
$$\int \frac{1}{\left(x - 4\right)^{2} + 4}\, dx = C + \frac{\operatorname{atan}{\left(\frac{x}{2} - 2 \right)}}{2}$$
The graph
The answer [src]
atan(2)   atan(3/2)
------- - ---------
   2          2    
$$- \frac{\operatorname{atan}{\left(\frac{3}{2} \right)}}{2} + \frac{\operatorname{atan}{\left(2 \right)}}{2}$$
=
=
atan(2)   atan(3/2)
------- - ---------
   2          2    
$$- \frac{\operatorname{atan}{\left(\frac{3}{2} \right)}}{2} + \frac{\operatorname{atan}{\left(2 \right)}}{2}$$
atan(2)/2 - atan(3/2)/2
Numerical answer [src]
0.0621774972733807
0.0621774972733807

    Use the examples entering the upper and lower limits of integration.