Mister Exam

Other calculators

Integral of 1/(x(log(x)-1)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |                2   
 |  x*(log(x) - 1)    
 |                    
/                     
 2                    
e                     
$$\int\limits_{e^{2}}^{\infty} \frac{1}{x \left(\log{\left(x \right)} - 1\right)^{2}}\, dx$$
Integral(1/(x*(log(x) - 1)^2), (x, exp(2), oo))
The answer (Indefinite) [src]
  /                                    
 |                                     
 |        1                      1     
 | --------------- dx = C - -----------
 |               2          -1 + log(x)
 | x*(log(x) - 1)                      
 |                                     
/                                      
$$\int \frac{1}{x \left(\log{\left(x \right)} - 1\right)^{2}}\, dx = C - \frac{1}{\log{\left(x \right)} - 1}$$
The graph
The answer [src]
1
$$1$$
=
=
1
$$1$$
1

    Use the examples entering the upper and lower limits of integration.