Mister Exam

Other calculators

Integral of 1/(x(ln(x+4)^(1/2))) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 oo                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |      ____________   
 |  x*\/ log(x + 4)    
 |                     
/                      
0                      
$$\int\limits_{0}^{\infty} \frac{1}{x \sqrt{\log{\left(x + 4 \right)}}}\, dx$$
Integral(1/(x*sqrt(log(x + 4))), (x, 0, oo))
The graph
The answer [src]
 oo                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |      ____________   
 |  x*\/ log(4 + x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{\infty} \frac{1}{x \sqrt{\log{\left(x + 4 \right)}}}\, dx$$
=
=
 oo                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |      ____________   
 |  x*\/ log(4 + x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{\infty} \frac{1}{x \sqrt{\log{\left(x + 4 \right)}}}\, dx$$
Integral(1/(x*sqrt(log(4 + x))), (x, 0, oo))

    Use the examples entering the upper and lower limits of integration.