Mister Exam

Other calculators

Integral of 1/(u*(√(u^2-a^2))) du

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |          1          
 |  1*-------------- du
 |         _________   
 |        /  2    2    
 |    u*\/  u  - a     
 |                     
/                      
0                      
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{u \sqrt{- a^{2} + u^{2}}}\, du$$
The answer (Indefinite) [src]
                             //       /a\              \
                             ||I*acosh|-|      | 2|    |
                             ||       \u/      |a |    |
  /                          ||----------  for |--| > 1|
 |                           ||    a           | 2|    |
 |         1                 ||                |u |    |
 | 1*-------------- du = C + |<                        |
 |        _________          ||     /a\                |
 |       /  2    2           ||-asin|-|                |
 |   u*\/  u  - a            ||     \u/                |
 |                           ||---------    otherwise  |
/                            ||    a                   |
                             \\                        /
$$\int 1 \cdot \frac{1}{u \sqrt{- a^{2} + u^{2}}}\, du = C + \begin{cases} \frac{i \operatorname{acosh}{\left(\frac{a}{u} \right)}}{a} & \text{for}\: \left|{\frac{a^{2}}{u^{2}}}\right| > 1 \\- \frac{\operatorname{asin}{\left(\frac{a}{u} \right)}}{a} & \text{otherwise} \end{cases}$$
The answer [src]
  1                                              
  /                                              
 |                                               
 |  /                                 | 2|       
 |  |            -I                   |a |       
 |  |---------------------------  for ---- > 1   
 |  |       _______     ________        2        
 |  | 2    /     a     /      a        u         
 |  |u *  /  1 + - *  /  -1 + -                  
 |  |   \/       u  \/        u                  
 |  |                                            
 |  <             1                            du
 |  |     -----------------        otherwise     
 |  |              ________                      
 |  |             /      2                       
 |  |      2     /      a                        
 |  |     u *   /   1 - --                       
 |  |          /         2                       
 |  |        \/         u                        
 |  \                                            
 |                                               
/                                                
0                                                
$$\int\limits_{0}^{1} \begin{cases} - \frac{i}{u^{2} \sqrt{\frac{a}{u} - 1} \sqrt{\frac{a}{u} + 1}} & \text{for}\: \frac{\left|{a^{2}}\right|}{u^{2}} > 1 \\\frac{1}{u^{2} \sqrt{- \frac{a^{2}}{u^{2}} + 1}} & \text{otherwise} \end{cases}\, du$$
=
=
  1                                              
  /                                              
 |                                               
 |  /                                 | 2|       
 |  |            -I                   |a |       
 |  |---------------------------  for ---- > 1   
 |  |       _______     ________        2        
 |  | 2    /     a     /      a        u         
 |  |u *  /  1 + - *  /  -1 + -                  
 |  |   \/       u  \/        u                  
 |  |                                            
 |  <             1                            du
 |  |     -----------------        otherwise     
 |  |              ________                      
 |  |             /      2                       
 |  |      2     /      a                        
 |  |     u *   /   1 - --                       
 |  |          /         2                       
 |  |        \/         u                        
 |  \                                            
 |                                               
/                                                
0                                                
$$\int\limits_{0}^{1} \begin{cases} - \frac{i}{u^{2} \sqrt{\frac{a}{u} - 1} \sqrt{\frac{a}{u} + 1}} & \text{for}\: \frac{\left|{a^{2}}\right|}{u^{2}} > 1 \\\frac{1}{u^{2} \sqrt{- \frac{a^{2}}{u^{2}} + 1}} & \text{otherwise} \end{cases}\, du$$

    Use the examples entering the upper and lower limits of integration.