Mister Exam

Other calculators


1/(2x^2-2x+3)

Integral of 1/(2x^2-2x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |     2             
 |  2*x  - 2*x + 3   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\left(2 x^{2} - 2 x\right) + 3}\, dx$$
Integral(1/(2*x^2 - 2*x + 3), (x, 0, 1))
Detail solution
We have the integral:
  /                 
 |                  
 |       1          
 | -------------- dx
 |    2             
 | 2*x  - 2*x + 3   
 |                  
/                   
Rewrite the integrand
      1                         1               
-------------- = -------------------------------
   2                 /                    2    \
2*x  - 2*x + 3       |/     ___       ___\     |
                     ||-2*\/ 5      \/ 5 |     |
                 5/2*||--------*x + -----|  + 1|
                     \\   5           5  /     /
or
  /                   
 |                    
 |       1            
 | -------------- dx  
 |    2              =
 | 2*x  - 2*x + 3     
 |                    
/                     
  
    /                            
   |                             
   |             1               
2* | ------------------------- dx
   |                     2       
   | /     ___       ___\        
   | |-2*\/ 5      \/ 5 |        
   | |--------*x + -----|  + 1   
   | \   5           5  /        
   |                             
  /                              
---------------------------------
                5                
In the integral
    /                            
   |                             
   |             1               
2* | ------------------------- dx
   |                     2       
   | /     ___       ___\        
   | |-2*\/ 5      \/ 5 |        
   | |--------*x + -----|  + 1   
   | \   5           5  /        
   |                             
  /                              
---------------------------------
                5                
do replacement
      ___         ___
    \/ 5    2*x*\/ 5 
v = ----- - ---------
      5         5    
then
the integral =
    /                     
   |                      
   |   1                  
2* | ------ dv            
   |      2               
   | 1 + v                
   |                      
  /              2*atan(v)
-------------- = ---------
      5              5    
do backward replacement
    /                                                              
   |                                                               
   |             1                                                 
2* | ------------------------- dx                                  
   |                     2                                         
   | /     ___       ___\                                          
   | |-2*\/ 5      \/ 5 |                                          
   | |--------*x + -----|  + 1                /    ___         ___\
   | \   5           5  /             ___     |  \/ 5    2*x*\/ 5 |
   |                                \/ 5 *atan|- ----- + ---------|
  /                                           \    5         5    /
--------------------------------- = -------------------------------
                5                                  5               
Solution is:
              /    ___         ___\
      ___     |  \/ 5    2*x*\/ 5 |
    \/ 5 *atan|- ----- + ---------|
              \    5         5    /
C + -------------------------------
                   5               
The answer (Indefinite) [src]
                                     /    ___           \
  /                          ___     |2*\/ 5 *(-1/2 + x)|
 |                         \/ 5 *atan|------------------|
 |       1                           \        5         /
 | -------------- dx = C + ------------------------------
 |    2                                  5               
 | 2*x  - 2*x + 3                                        
 |                                                       
/                                                        
$$\int \frac{1}{\left(2 x^{2} - 2 x\right) + 3}\, dx = C + \frac{\sqrt{5} \operatorname{atan}{\left(\frac{2 \sqrt{5} \left(x - \frac{1}{2}\right)}{5} \right)}}{5}$$
The graph
The answer [src]
            /  ___\
    ___     |\/ 5 |
2*\/ 5 *atan|-----|
            \  5  /
-------------------
         5         
$$\frac{2 \sqrt{5} \operatorname{atan}{\left(\frac{\sqrt{5}}{5} \right)}}{5}$$
=
=
            /  ___\
    ___     |\/ 5 |
2*\/ 5 *atan|-----|
            \  5  /
-------------------
         5         
$$\frac{2 \sqrt{5} \operatorname{atan}{\left(\frac{\sqrt{5}}{5} \right)}}{5}$$
2*sqrt(5)*atan(sqrt(5)/5)/5
Numerical answer [src]
0.376137344227054
0.376137344227054
The graph
Integral of 1/(2x^2-2x+3) dx

    Use the examples entering the upper and lower limits of integration.