___ \/ 3 ----- 2 / | | ________ | / 2 | \/ 1 - x | ----------- dx | 2 | / ___ \/ 2 ----- 2
Integral(sqrt(1 - x^2)/2, (x, sqrt(2)/2, sqrt(3)/2))
The integral of a constant times a function is the constant times the integral of the function:
TrigSubstitutionRule(theta=_theta, func=sin(_theta), rewritten=cos(_theta)**2, substep=RewriteRule(rewritten=cos(2*_theta)/2 + 1/2, substep=AddRule(substeps=[ConstantTimesRule(constant=1/2, other=cos(2*_theta), substep=URule(u_var=_u, u_func=2*_theta, constant=1/2, substep=ConstantTimesRule(constant=1/2, other=cos(_u), substep=TrigRule(func='cos', arg=_u, context=cos(_u), symbol=_u), context=cos(_u), symbol=_u), context=cos(2*_theta), symbol=_theta), context=cos(2*_theta)/2, symbol=_theta), ConstantRule(constant=1/2, context=1/2, symbol=_theta)], context=cos(2*_theta)/2 + 1/2, symbol=_theta), context=cos(_theta)**2, symbol=_theta), restriction=(x > -1) & (x < 1), context=sqrt(1 - x**2), symbol=x)
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ / ________ | | / 2 | ________-1, x < 1) | \/ 1 - x \ 2 2 | ----------- dx = C + ------------------------------------------------ | 2 2 | /
___ 1 \/ 3 pi - - + ----- + -- 8 16 48
=
___ 1 \/ 3 pi - - + ----- + -- 8 16 48
-1/8 + sqrt(3)/16 + pi/48
Use the examples entering the upper and lower limits of integration.