Mister Exam

Other calculators

Integral of 1/((2-x)^(2/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6              
  /              
 |               
 |      1        
 |  ---------- dx
 |         2/3   
 |  (2 - x)      
 |               
/                
2                
261(2x)23dx\int\limits_{2}^{6} \frac{1}{\left(2 - x\right)^{\frac{2}{3}}}\, dx
Integral(1/((2 - x)^(2/3)), (x, 2, 6))
Detail solution
  1. Let u=(2x)23u = \left(2 - x\right)^{\frac{2}{3}}.

    Then let du=2dx32x3du = - \frac{2 dx}{3 \sqrt[3]{2 - x}} and substitute 3du2- \frac{3 du}{2}:

    (32u)du\int \left(- \frac{3}{2 \sqrt{u}}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      1udu=31udu2\int \frac{1}{\sqrt{u}}\, du = - \frac{3 \int \frac{1}{\sqrt{u}}\, du}{2}

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        1udu=2u\int \frac{1}{\sqrt{u}}\, du = 2 \sqrt{u}

      So, the result is: 3u- 3 \sqrt{u}

    Now substitute uu back in:

    32x3- 3 \sqrt[3]{2 - x}

  2. Add the constant of integration:

    32x3+constant- 3 \sqrt[3]{2 - x}+ \mathrm{constant}


The answer is:

32x3+constant- 3 \sqrt[3]{2 - x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 |     1                 3 _______
 | ---------- dx = C - 3*\/ 2 - x 
 |        2/3                     
 | (2 - x)                        
 |                                
/                                 
1(2x)23dx=C32x3\int \frac{1}{\left(2 - x\right)^{\frac{2}{3}}}\, dx = C - 3 \sqrt[3]{2 - x}
The graph
2.000002.000102.000202.000302.000402.000502.000602.000702.000802.000902.0010001
The answer [src]
   3 ____  2/3
-3*\/ -1 *2   
313223- 3 \sqrt[3]{-1} \cdot 2^{\frac{2}{3}}
=
=
   3 ____  2/3
-3*\/ -1 *2   
313223- 3 \sqrt[3]{-1} \cdot 2^{\frac{2}{3}}
-3*(-1)^(1/3)*2^(2/3)
Numerical answer [src]
(-2.38110059391664 - 4.12418720659605j)
(-2.38110059391664 - 4.12418720659605j)

    Use the examples entering the upper and lower limits of integration.