Mister Exam

Other calculators

Integral of 1/((2-x)^(2/3)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6              
  /              
 |               
 |      1        
 |  ---------- dx
 |         2/3   
 |  (2 - x)      
 |               
/                
2                
$$\int\limits_{2}^{6} \frac{1}{\left(2 - x\right)^{\frac{2}{3}}}\, dx$$
Integral(1/((2 - x)^(2/3)), (x, 2, 6))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is when :

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |     1                 3 _______
 | ---------- dx = C - 3*\/ 2 - x 
 |        2/3                     
 | (2 - x)                        
 |                                
/                                 
$$\int \frac{1}{\left(2 - x\right)^{\frac{2}{3}}}\, dx = C - 3 \sqrt[3]{2 - x}$$
The graph
The answer [src]
   3 ____  2/3
-3*\/ -1 *2   
$$- 3 \sqrt[3]{-1} \cdot 2^{\frac{2}{3}}$$
=
=
   3 ____  2/3
-3*\/ -1 *2   
$$- 3 \sqrt[3]{-1} \cdot 2^{\frac{2}{3}}$$
-3*(-1)^(1/3)*2^(2/3)
Numerical answer [src]
(-2.38110059391664 - 4.12418720659605j)
(-2.38110059391664 - 4.12418720659605j)

    Use the examples entering the upper and lower limits of integration.