Integral of 1/((2-x)^(2/3)) dx
The solution
Detail solution
-
Let u=(2−x)32.
Then let du=−332−x2dx and substitute −23du:
∫(−2u3)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−23∫u1du
-
The integral of un is n+1un+1 when n=−1:
∫u1du=2u
So, the result is: −3u
Now substitute u back in:
−332−x
-
Add the constant of integration:
−332−x+constant
The answer is:
−332−x+constant
The answer (Indefinite)
[src]
/
|
| 1 3 _______
| ---------- dx = C - 3*\/ 2 - x
| 2/3
| (2 - x)
|
/
∫(2−x)321dx=C−332−x
The graph
−33−1⋅232
=
−33−1⋅232
(-2.38110059391664 - 4.12418720659605j)
(-2.38110059391664 - 4.12418720659605j)
Use the examples entering the upper and lower limits of integration.