Mister Exam

Other calculators

Integral of 1/(2-cos(x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |  2 - cos(x)   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{2 - \cos{\left(x \right)}}\, dx$$
Integral(1/(2 - cos(x)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. Don't know the steps in finding this integral.

      But the integral is

    So, the result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
                               /        /x   pi\                     \
                               |        |- - --|                     |
  /                        ___ |        |2   2 |       /  ___    /x\\|
 |                     2*\/ 3 *|pi*floor|------| + atan|\/ 3 *tan|-|||
 |     1                       \        \  pi  /       \         \2///
 | ---------- dx = C + -----------------------------------------------
 | 2 - cos(x)                                 3                       
 |                                                                    
/                                                                     
$$\int \frac{1}{2 - \cos{\left(x \right)}}\, dx = C + \frac{2 \sqrt{3} \left(\operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{x}{2} \right)} \right)} + \pi \left\lfloor{\frac{\frac{x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{3}$$
The graph
The answer [src]
       ___       ___ /          /  ___         \\
2*pi*\/ 3    2*\/ 3 *\-pi + atan\\/ 3 *tan(1/2)//
---------- + ------------------------------------
    3                         3                  
$$\frac{2 \sqrt{3} \left(- \pi + \operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{1}{2} \right)} \right)}\right)}{3} + \frac{2 \sqrt{3} \pi}{3}$$
=
=
       ___       ___ /          /  ___         \\
2*pi*\/ 3    2*\/ 3 *\-pi + atan\\/ 3 *tan(1/2)//
---------- + ------------------------------------
    3                         3                  
$$\frac{2 \sqrt{3} \left(- \pi + \operatorname{atan}{\left(\sqrt{3} \tan{\left(\frac{1}{2} \right)} \right)}\right)}{3} + \frac{2 \sqrt{3} \pi}{3}$$
2*pi*sqrt(3)/3 + 2*sqrt(3)*(-pi + atan(sqrt(3)*tan(1/2)))/3
Numerical answer [src]
0.875002134035093
0.875002134035093

    Use the examples entering the upper and lower limits of integration.