1 / | | 1 | ---------- dx | 2 - cos(x) | / 0
Integral(1/(2 - cos(x)), (x, 0, 1))
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ /x pi\ \
| |- - --| |
/ ___ | |2 2 | / ___ /x\\|
| 2*\/ 3 *|pi*floor|------| + atan|\/ 3 *tan|-|||
| 1 \ \ pi / \ \2///
| ---------- dx = C + -----------------------------------------------
| 2 - cos(x) 3
|
/
___ ___ / / ___ \\
2*pi*\/ 3 2*\/ 3 *\-pi + atan\\/ 3 *tan(1/2)//
---------- + ------------------------------------
3 3
=
___ ___ / / ___ \\
2*pi*\/ 3 2*\/ 3 *\-pi + atan\\/ 3 *tan(1/2)//
---------- + ------------------------------------
3 3
2*pi*sqrt(3)/3 + 2*sqrt(3)*(-pi + atan(sqrt(3)*tan(1/2)))/3
Use the examples entering the upper and lower limits of integration.