4 / | | / pi\ | cos|x + --| | \ 4 / | ----------- dx | 2 | / 1
Integral(cos(x + pi/4)/2, (x, 1, 4))
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of cosine is sine:
Now substitute back in:
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | | / pi\ / pi\ | cos|x + --| sin|x + --| | \ 4 / \ 4 / | ----------- dx = C + ----------- | 2 2 | /
/ pi\ / pi\
sin|4 + --| sin|1 + --|
\ 4 / \ 4 /
----------- - -----------
2 2
=
/ pi\ / pi\
sin|4 + --| sin|1 + --|
\ 4 / \ 4 /
----------- - -----------
2 2
sin(4 + pi/4)/2 - sin(1 + pi/4)/2
Use the examples entering the upper and lower limits of integration.