1 / | | /cos(x) \ | |------ - 5*sin(x)| dx | \ 2 / | / 0
Integral(cos(x)/2 - 5*sin(x), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | /cos(x) \ sin(x) | |------ - 5*sin(x)| dx = C + ------ + 5*cos(x) | \ 2 / 2 | /
sin(1)
-5 + ------ + 5*cos(1)
2
=
sin(1)
-5 + ------ + 5*cos(1)
2
-5 + sin(1)/2 + 5*cos(1)
Use the examples entering the upper and lower limits of integration.