Mister Exam

Other calculators

Integral of 1/2(cosx)-5sinx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |  /cos(x)           \   
 |  |------ - 5*sin(x)| dx
 |  \  2              /   
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \left(- 5 \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{2}\right)\, dx$$
Integral(cos(x)/2 - 5*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                               
 | /cos(x)           \          sin(x)           
 | |------ - 5*sin(x)| dx = C + ------ + 5*cos(x)
 | \  2              /            2              
 |                                               
/                                                
$$\int \left(- 5 \sin{\left(x \right)} + \frac{\cos{\left(x \right)}}{2}\right)\, dx = C + \frac{\sin{\left(x \right)}}{2} + 5 \cos{\left(x \right)}$$
The graph
The answer [src]
     sin(1)           
-5 + ------ + 5*cos(1)
       2              
$$-5 + \frac{\sin{\left(1 \right)}}{2} + 5 \cos{\left(1 \right)}$$
=
=
     sin(1)           
-5 + ------ + 5*cos(1)
       2              
$$-5 + \frac{\sin{\left(1 \right)}}{2} + 5 \cos{\left(1 \right)}$$
-5 + sin(1)/2 + 5*cos(1)
Numerical answer [src]
-1.87775297825535
-1.87775297825535

    Use the examples entering the upper and lower limits of integration.