Mister Exam

Other calculators

Integral of 1/((3*x-4)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dx
 |           2   
 |  (3*x - 4)    
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{\left(3 x - 4\right)^{2}}\, dx$$
Integral(1/((3*x - 4)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                
 |                                 
 |     1                    1      
 | ---------- dx = C - ------------
 |          2          9*(-4/3 + x)
 | (3*x - 4)                       
 |                                 
/                                  
$$\int \frac{1}{\left(3 x - 4\right)^{2}}\, dx = C - \frac{1}{9 \left(x - \frac{4}{3}\right)}$$
The graph
The answer [src]
1/4
$$\frac{1}{4}$$
=
=
1/4
$$\frac{1}{4}$$
1/4
Numerical answer [src]
0.25
0.25

    Use the examples entering the upper and lower limits of integration.