Mister Exam

Other calculators

Integral of 1/((tg(x)-1)sin(2x)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |            1             
 |  --------------------- dx
 |  (tan(x) - 1)*sin(2*x)   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} \frac{1}{\left(\tan{\left(x \right)} - 1\right) \sin{\left(2 x \right)}}\, dx$$
Integral(1/((tan(x) - 1)*sin(2*x)), (x, 0, 1))
The answer (Indefinite) [src]
  /                                 /                         
 |                                 |                          
 |           1                     |           1              
 | --------------------- dx = C +  | ---------------------- dx
 | (tan(x) - 1)*sin(2*x)           | (-1 + tan(x))*sin(2*x)   
 |                                 |                          
/                                 /                           
$$\int \frac{1}{\left(\tan{\left(x \right)} - 1\right) \sin{\left(2 x \right)}}\, dx = C + \int \frac{1}{\left(\tan{\left(x \right)} - 1\right) \sin{\left(2 x \right)}}\, dx$$
The answer [src]
  1                          
  /                          
 |                           
 |            1              
 |  ---------------------- dx
 |  (-1 + tan(x))*sin(2*x)   
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \frac{1}{\left(\tan{\left(x \right)} - 1\right) \sin{\left(2 x \right)}}\, dx$$
=
=
  1                          
  /                          
 |                           
 |            1              
 |  ---------------------- dx
 |  (-1 + tan(x))*sin(2*x)   
 |                           
/                            
0                            
$$\int\limits_{0}^{1} \frac{1}{\left(\tan{\left(x \right)} - 1\right) \sin{\left(2 x \right)}}\, dx$$
Integral(1/((-1 + tan(x))*sin(2*x)), (x, 0, 1))
Numerical answer [src]
-21.1594295613661
-21.1594295613661

    Use the examples entering the upper and lower limits of integration.