Mister Exam

Other calculators

Integral of 1/sqrt(x^2+y^2+1) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dy
 |     _____________   
 |    /  2    2        
 |  \/  x  + y  + 1    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\left(x^{2} + y^{2}\right) + 1}}\, dy$$
Integral(1/(sqrt(x^2 + y^2 + 1)), (y, 0, 1))
The answer (Indefinite) [src]
  /                                                        
 |                                                         
 |        1                       /           y           \
 | ---------------- dy = C + asinh|-----------------------|
 |    _____________               |   ____________________|
 |   /  2    2                    |  /           /     2\ |
 | \/  x  + y  + 1                \\/  polar_lift\1 + x / /
 |                                                         
/                                                          
$$\int \frac{1}{\sqrt{\left(x^{2} + y^{2}\right) + 1}}\, dy = C + \operatorname{asinh}{\left(\frac{y}{\sqrt{\operatorname{polar\_lift}{\left(x^{2} + 1 \right)}}} \right)}$$
The answer [src]
     /           1           \
asinh|-----------------------|
     |   ____________________|
     |  /           /     2\ |
     \\/  polar_lift\1 + x / /
$$\operatorname{asinh}{\left(\frac{1}{\sqrt{\operatorname{polar\_lift}{\left(x^{2} + 1 \right)}}} \right)}$$
=
=
     /           1           \
asinh|-----------------------|
     |   ____________________|
     |  /           /     2\ |
     \\/  polar_lift\1 + x / /
$$\operatorname{asinh}{\left(\frac{1}{\sqrt{\operatorname{polar\_lift}{\left(x^{2} + 1 \right)}}} \right)}$$
asinh(1/sqrt(polar_lift(1 + x^2)))

    Use the examples entering the upper and lower limits of integration.