Mister Exam

Other calculators

Integral of 1/sqrt(2x-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                 
  /                 
 |                  
 |        1         
 |  ------------- dx
 |     __________   
 |    /        2    
 |  \/  2*x - x     
 |                  
/                   
0                   
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- x^{2} + 2 x}}\, dx$$
Integral(1/(sqrt(2*x - x^2)), (x, 0, 1))
The answer [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    ___   _______   
 |  \/ x *\/ 2 - x    
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x} \sqrt{2 - x}}\, dx$$
=
=
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    ___   _______   
 |  \/ x *\/ 2 - x    
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sqrt{x} \sqrt{2 - x}}\, dx$$
Integral(1/(sqrt(x)*sqrt(2 - x)), (x, 0, 1))
Numerical answer [src]
1.57079632641972
1.57079632641972

    Use the examples entering the upper and lower limits of integration.