Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of 2/x^2 Integral of 2/x^2
  • Integral of (x+1)^3 Integral of (x+1)^3
  • Integral of -4 Integral of -4
  • Integral of sin^4 Integral of sin^4
  • Identical expressions

  • (one /sqrt(two pi))exp(-(x^ two)/2)
  • (1 divide by square root of (2 Pi )) exponent of ( minus (x squared ) divide by 2)
  • (one divide by square root of (two Pi )) exponent of ( minus (x to the power of two) divide by 2)
  • (1/√(2pi))exp(-(x^2)/2)
  • (1/sqrt(2pi))exp(-(x2)/2)
  • 1/sqrt2piexp-x2/2
  • (1/sqrt(2pi))exp(-(x²)/2)
  • (1/sqrt(2pi))exp(-(x to the power of 2)/2)
  • 1/sqrt2piexp-x^2/2
  • (1 divide by sqrt(2pi))exp(-(x^2) divide by 2)
  • (1/sqrt(2pi))exp(-(x^2)/2)dx
  • Similar expressions

  • (1/sqrt(2pi))exp((x^2)/2)

Integral of (1/sqrt(2pi))exp(-(x^2)/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 933           
 ---           
  50           
  /            
 |             
 |      2      
 |    -x       
 |    ----     
 |     2       
 |   e         
 |  -------- dx
 |    ______   
 |  \/ 2*pi    
 |             
/              
0              
$$\int\limits_{0}^{\frac{933}{50}} \frac{e^{\frac{\left(-1\right) x^{2}}{2}}}{\sqrt{2 \pi}}\, dx$$
Integral(exp((-x^2)/2)/sqrt(2*pi), (x, 0, 933/50))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

      ErfRule(a=-1/2, b=0, c=0, context=exp((-x**2)/2), symbol=x)

    So, the result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 |     2                             ___      /    ___\
 |   -x                ___   ____  \/ 2       |x*\/ 2 |
 |   ----            \/ 2 *\/ pi *--------*erf|-------|
 |    2                               ____    \   2   /
 |  e                             2*\/ pi              
 | -------- dx = C + ----------------------------------
 |   ______                          2                 
 | \/ 2*pi                                             
 |                                                     
/                                                      
$$\int \frac{e^{\frac{\left(-1\right) x^{2}}{2}}}{\sqrt{2 \pi}}\, dx = C + \frac{\sqrt{2} \sqrt{\pi} \frac{\sqrt{2}}{2 \sqrt{\pi}} \operatorname{erf}{\left(\frac{\sqrt{2} x}{2} \right)}}{2}$$
The graph
The answer [src]
   /      ___\
   |933*\/ 2 |
erf|---------|
   \   100   /
--------------
      2       
$$\frac{\operatorname{erf}{\left(\frac{933 \sqrt{2}}{100} \right)}}{2}$$
=
=
   /      ___\
   |933*\/ 2 |
erf|---------|
   \   100   /
--------------
      2       
$$\frac{\operatorname{erf}{\left(\frac{933 \sqrt{2}}{100} \right)}}{2}$$
erf(933*sqrt(2)/100)/2
Numerical answer [src]
0.5
0.5

    Use the examples entering the upper and lower limits of integration.