1 / | | 1 | --------------- dx | ____________ | / 2 | \/ 2 - (5*x) | / 0
Integral(1/(sqrt(2 - (5*x)^2)), (x, 0, 1))
TrigSubstitutionRule(theta=_theta, func=sqrt(2)*sin(_theta)/5, rewritten=1/5, substep=ConstantRule(constant=1/5, context=1/5, symbol=_theta), restriction=(x > -sqrt(2)/5) & (x < sqrt(2)/5), context=1/(sqrt(2 - (5*x)**2)), symbol=x)
Add the constant of integration:
The answer is:
/ // / ___\ \ | || |5*x*\/ 2 | | | 1 ||asin|---------| / ___ ___\| | --------------- dx = C + |< \ 2 / | -\/ 2 \/ 2 || | ____________ ||--------------- for And|x > -------, x < -----|| | / 2 || 5 \ 5 5 /| | \/ 2 - (5*x) \\ / | /
/ ___\ |5*\/ 2 | asin|-------| \ 2 / ------------- 5
=
/ ___\ |5*\/ 2 | asin|-------| \ 2 / ------------- 5
asin(5*sqrt(2)/2)/5
(0.313073650498126 - 0.36029517896484j)
(0.313073650498126 - 0.36029517896484j)
Use the examples entering the upper and lower limits of integration.