Integral of 1/sqrt(2-(5x)^2) dx
The solution
Detail solution
TrigSubstitutionRule(theta=_theta, func=sqrt(2)*sin(_theta)/5, rewritten=1/5, substep=ConstantRule(constant=1/5, context=1/5, symbol=_theta), restriction=(x > -sqrt(2)/5) & (x < sqrt(2)/5), context=1/(sqrt(2 - (5*x)**2)), symbol=x)
-
Add the constant of integration:
{5asin(252x)forx>−52∧x<52+constant
The answer is:
{5asin(252x)forx>−52∧x<52+constant
The answer (Indefinite)
[src]
/ // / ___\ \
| || |5*x*\/ 2 | |
| 1 ||asin|---------| / ___ ___\|
| --------------- dx = C + |< \ 2 / | -\/ 2 \/ 2 ||
| ____________ ||--------------- for And|x > -------, x < -----||
| / 2 || 5 \ 5 5 /|
| \/ 2 - (5*x) \\ /
|
/
∫2−(5x)21dx=C+{5asin(252x)forx>−52∧x<52
The graph
/ ___\
|5*\/ 2 |
asin|-------|
\ 2 /
-------------
5
5asin(252)
=
/ ___\
|5*\/ 2 |
asin|-------|
\ 2 /
-------------
5
5asin(252)
(0.313073650498126 - 0.36029517896484j)
(0.313073650498126 - 0.36029517896484j)
Use the examples entering the upper and lower limits of integration.