Mister Exam

Other calculators

Integral of 1/(sqrt(3*x+1)-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    _________       
 |  \/ 3*x + 1  - 1   
 |                    
/                     
0                     
0113x+11dx\int\limits_{0}^{1} \frac{1}{\sqrt{3 x + 1} - 1}\, dx
Integral(1/(sqrt(3*x + 1) - 1), (x, 0, 1))
Detail solution
  1. Let u=3x+1u = \sqrt{3 x + 1}.

    Then let du=3dx23x+1du = \frac{3 dx}{2 \sqrt{3 x + 1}} and substitute 2du2 du:

    2u3u3du\int \frac{2 u}{3 u - 3}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      u3u3du=2u3u3du\int \frac{u}{3 u - 3}\, du = 2 \int \frac{u}{3 u - 3}\, du

      1. Rewrite the integrand:

        u3u3=13+13(u1)\frac{u}{3 u - 3} = \frac{1}{3} + \frac{1}{3 \left(u - 1\right)}

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

          13du=u3\int \frac{1}{3}\, du = \frac{u}{3}

        1. The integral of a constant times a function is the constant times the integral of the function:

          13(u1)du=1u1du3\int \frac{1}{3 \left(u - 1\right)}\, du = \frac{\int \frac{1}{u - 1}\, du}{3}

          1. Let u=u1u = u - 1.

            Then let du=dudu = du and substitute dudu:

            1udu\int \frac{1}{u}\, du

            1. The integral of 1u\frac{1}{u} is log(u)\log{\left(u \right)}.

            Now substitute uu back in:

            log(u1)\log{\left(u - 1 \right)}

          So, the result is: log(u1)3\frac{\log{\left(u - 1 \right)}}{3}

        The result is: u3+log(u1)3\frac{u}{3} + \frac{\log{\left(u - 1 \right)}}{3}

      So, the result is: 2u3+2log(u1)3\frac{2 u}{3} + \frac{2 \log{\left(u - 1 \right)}}{3}

    Now substitute uu back in:

    23x+13+2log(3x+11)3\frac{2 \sqrt{3 x + 1}}{3} + \frac{2 \log{\left(\sqrt{3 x + 1} - 1 \right)}}{3}

  2. Now simplify:

    23x+13+2log(3x+11)3\frac{2 \sqrt{3 x + 1}}{3} + \frac{2 \log{\left(\sqrt{3 x + 1} - 1 \right)}}{3}

  3. Add the constant of integration:

    23x+13+2log(3x+11)3+constant\frac{2 \sqrt{3 x + 1}}{3} + \frac{2 \log{\left(\sqrt{3 x + 1} - 1 \right)}}{3}+ \mathrm{constant}


The answer is:

23x+13+2log(3x+11)3+constant\frac{2 \sqrt{3 x + 1}}{3} + \frac{2 \log{\left(\sqrt{3 x + 1} - 1 \right)}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                
 |                              _________        /       _________\
 |        1                 2*\/ 3*x + 1    2*log\-1 + \/ 3*x + 1 /
 | --------------- dx = C + ------------- + -----------------------
 |   _________                    3                    3           
 | \/ 3*x + 1  - 1                                                 
 |                                                                 
/                                                                  
13x+11dx=C+23x+13+2log(3x+11)3\int \frac{1}{\sqrt{3 x + 1} - 1}\, dx = C + \frac{2 \sqrt{3 x + 1}}{3} + \frac{2 \log{\left(\sqrt{3 x + 1} - 1 \right)}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-500010000
The answer [src]
oo
\infty
=
=
oo
\infty
oo
Numerical answer [src]
29.7900517291088
29.7900517291088

    Use the examples entering the upper and lower limits of integration.