Integral of 1/sqrt(1-(x/2)^2) dx
The solution
Detail solution
-
Rewrite the integrand:
1−(2x)21=4−x22
-
The integral of a constant times a function is the constant times the integral of the function:
∫4−x22dx=2∫4−x21dx
-
The integral of a constant times a function is the constant times the integral of the function:
∫4−x21dx=2∫1−4x21dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫1−u24du
-
The integral of a constant times a function is the constant times the integral of the function:
∫1−u22du=2∫1−u21du
ArcsinRule(context=1/sqrt(1 - _u**2), symbol=_u)
So, the result is: 2asin(u)
Now substitute u back in:
2asin(2x)
So, the result is: asin(2x)
So, the result is: 2asin(2x)
-
Add the constant of integration:
2asin(2x)+constant
The answer is:
2asin(2x)+constant
The answer (Indefinite)
[src]
/
|
| 1 /x\
| --------------- dx = C + 2*asin|-|
| __________ \2/
| / 2
| / /x\
| / 1 - |-|
| \/ \2/
|
/
∫1−(2x)21dx=C+2asin(2x)
The graph
1
/
|
| / 2
| | -I x
| |-------------- for -- > 1
| | _________ 4
| | / 2
| | / x
| | / -1 + --
| |\/ 4
| < dx
| | 1
| |------------- otherwise
| | ________
| | / 2
| | / x
| | / 1 - --
| |\/ 4
| \
|
/
0
0∫1⎩⎨⎧−4x2−1i1−4x21for4x2>1otherwisedx
=
1
/
|
| / 2
| | -I x
| |-------------- for -- > 1
| | _________ 4
| | / 2
| | / x
| | / -1 + --
| |\/ 4
| < dx
| | 1
| |------------- otherwise
| | ________
| | / 2
| | / x
| | / 1 - --
| |\/ 4
| \
|
/
0
0∫1⎩⎨⎧−4x2−1i1−4x21for4x2>1otherwisedx
Integral(Piecewise((-i/sqrt(-1 + x^2/4), x^2/4 > 1), (1/sqrt(1 - x^2/4), True)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.