Mister Exam

Other calculators


1/sqrt(1-(x/2)^2)
  • How to use it?

  • Integral of d{x}:
  • Integral of sinx Integral of sinx
  • Integral of cosx^2 Integral of cosx^2
  • Integral of sinh(x) Integral of sinh(x)
  • Integral of (1-x)/x^2
  • Identical expressions

  • one /sqrt(one -(x/ two)^ two)
  • 1 divide by square root of (1 minus (x divide by 2) squared )
  • one divide by square root of (one minus (x divide by two) to the power of two)
  • 1/√(1-(x/2)^2)
  • 1/sqrt(1-(x/2)2)
  • 1/sqrt1-x/22
  • 1/sqrt(1-(x/2)²)
  • 1/sqrt(1-(x/2) to the power of 2)
  • 1/sqrt1-x/2^2
  • 1 divide by sqrt(1-(x divide by 2)^2)
  • 1/sqrt(1-(x/2)^2)dx
  • Similar expressions

  • 1/sqrt(1+(x/2)^2)

Integral of 1/sqrt(1-(x/2)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |       __________   
 |      /        2    
 |     /      /x\     
 |    /   1 - |-|     
 |  \/        \2/     
 |                    
/                     
0                     
0111(x2)2dx\int\limits_{0}^{1} \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^{2}}}\, dx
Integral(1/(sqrt(1 - (x/2)^2)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    11(x2)2=24x2\frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^{2}}} = \frac{2}{\sqrt{4 - x^{2}}}

  2. The integral of a constant times a function is the constant times the integral of the function:

    24x2dx=214x2dx\int \frac{2}{\sqrt{4 - x^{2}}}\, dx = 2 \int \frac{1}{\sqrt{4 - x^{2}}}\, dx

    1. The integral of a constant times a function is the constant times the integral of the function:

      14x2dx=11x24dx2\int \frac{1}{\sqrt{4 - x^{2}}}\, dx = \frac{\int \frac{1}{\sqrt{1 - \frac{x^{2}}{4}}}\, dx}{2}

      1. Let u=x2u = \frac{x}{2}.

        Then let du=dx2du = \frac{dx}{2} and substitute 2du2 du:

        41u2du\int \frac{4}{\sqrt{1 - u^{2}}}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          21u2du=211u2du\int \frac{2}{\sqrt{1 - u^{2}}}\, du = 2 \int \frac{1}{\sqrt{1 - u^{2}}}\, du

            ArcsinRule(context=1/sqrt(1 - _u**2), symbol=_u)

          So, the result is: 2asin(u)2 \operatorname{asin}{\left(u \right)}

        Now substitute uu back in:

        2asin(x2)2 \operatorname{asin}{\left(\frac{x}{2} \right)}

      So, the result is: asin(x2)\operatorname{asin}{\left(\frac{x}{2} \right)}

    So, the result is: 2asin(x2)2 \operatorname{asin}{\left(\frac{x}{2} \right)}

  3. Add the constant of integration:

    2asin(x2)+constant2 \operatorname{asin}{\left(\frac{x}{2} \right)}+ \mathrm{constant}


The answer is:

2asin(x2)+constant2 \operatorname{asin}{\left(\frac{x}{2} \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                                   
 |        1                       /x\
 | --------------- dx = C + 2*asin|-|
 |      __________                \2/
 |     /        2                    
 |    /      /x\                     
 |   /   1 - |-|                     
 | \/        \2/                     
 |                                   
/                                    
11(x2)2dx=C+2asin(x2)\int \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^{2}}}\, dx = C + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}
The graph
0.001.000.100.200.300.400.500.600.700.800.9002
The answer [src]
  1                               
  /                               
 |                                
 |  /                     2       
 |  |     -I             x        
 |  |--------------  for -- > 1   
 |  |     _________      4        
 |  |    /       2                
 |  |   /       x                 
 |  |  /   -1 + --                
 |  |\/         4                 
 |  <                           dx
 |  |      1                      
 |  |-------------   otherwise    
 |  |     ________                
 |  |    /      2                 
 |  |   /      x                  
 |  |  /   1 - --                 
 |  |\/        4                  
 |  \                             
 |                                
/                                 
0                                 
01{ix241forx24>111x24otherwisedx\int\limits_{0}^{1} \begin{cases} - \frac{i}{\sqrt{\frac{x^{2}}{4} - 1}} & \text{for}\: \frac{x^{2}}{4} > 1 \\\frac{1}{\sqrt{1 - \frac{x^{2}}{4}}} & \text{otherwise} \end{cases}\, dx
=
=
  1                               
  /                               
 |                                
 |  /                     2       
 |  |     -I             x        
 |  |--------------  for -- > 1   
 |  |     _________      4        
 |  |    /       2                
 |  |   /       x                 
 |  |  /   -1 + --                
 |  |\/         4                 
 |  <                           dx
 |  |      1                      
 |  |-------------   otherwise    
 |  |     ________                
 |  |    /      2                 
 |  |   /      x                  
 |  |  /   1 - --                 
 |  |\/        4                  
 |  \                             
 |                                
/                                 
0                                 
01{ix241forx24>111x24otherwisedx\int\limits_{0}^{1} \begin{cases} - \frac{i}{\sqrt{\frac{x^{2}}{4} - 1}} & \text{for}\: \frac{x^{2}}{4} > 1 \\\frac{1}{\sqrt{1 - \frac{x^{2}}{4}}} & \text{otherwise} \end{cases}\, dx
Integral(Piecewise((-i/sqrt(-1 + x^2/4), x^2/4 > 1), (1/sqrt(1 - x^2/4), True)), (x, 0, 1))
Numerical answer [src]
1.0471975511966
1.0471975511966
The graph
Integral of 1/sqrt(1-(x/2)^2) dx

    Use the examples entering the upper and lower limits of integration.