1 / | | 1 | --------------- dx | __________ | / 2 | / /x\ | / 1 - |-| | \/ \2/ | / 0
Integral(1/(sqrt(1 - (x/2)^2)), (x, 0, 1))
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
ArcsinRule(context=1/sqrt(1 - _u**2), symbol=_u)
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
Add the constant of integration:
The answer is:
/ | | 1 /x\ | --------------- dx = C + 2*asin|-| | __________ \2/ | / 2 | / /x\ | / 1 - |-| | \/ \2/ | /
1 / | | / 2 | | -I x | |-------------- for -- > 1 | | _________ 4 | | / 2 | | / x | | / -1 + -- | |\/ 4 | < dx | | 1 | |------------- otherwise | | ________ | | / 2 | | / x | | / 1 - -- | |\/ 4 | \ | / 0
=
1 / | | / 2 | | -I x | |-------------- for -- > 1 | | _________ 4 | | / 2 | | / x | | / -1 + -- | |\/ 4 | < dx | | 1 | |------------- otherwise | | ________ | | / 2 | | / x | | / 1 - -- | |\/ 4 | \ | / 0
Integral(Piecewise((-i/sqrt(-1 + x^2/4), x^2/4 > 1), (1/sqrt(1 - x^2/4), True)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.