Mister Exam

Other calculators


1/sqrt(1-(x/2)^2)

Integral of 1/sqrt(1-(x/2)^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |       __________   
 |      /        2    
 |     /      /x\     
 |    /   1 - |-|     
 |  \/        \2/     
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^{2}}}\, dx$$
Integral(1/(sqrt(1 - (x/2)^2)), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. The integral of a constant times a function is the constant times the integral of the function:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

            ArcsinRule(context=1/sqrt(1 - _u**2), symbol=_u)

          So, the result is:

        Now substitute back in:

      So, the result is:

    So, the result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                                   
 |        1                       /x\
 | --------------- dx = C + 2*asin|-|
 |      __________                \2/
 |     /        2                    
 |    /      /x\                     
 |   /   1 - |-|                     
 | \/        \2/                     
 |                                   
/                                    
$$\int \frac{1}{\sqrt{1 - \left(\frac{x}{2}\right)^{2}}}\, dx = C + 2 \operatorname{asin}{\left(\frac{x}{2} \right)}$$
The graph
The answer [src]
  1                               
  /                               
 |                                
 |  /                     2       
 |  |     -I             x        
 |  |--------------  for -- > 1   
 |  |     _________      4        
 |  |    /       2                
 |  |   /       x                 
 |  |  /   -1 + --                
 |  |\/         4                 
 |  <                           dx
 |  |      1                      
 |  |-------------   otherwise    
 |  |     ________                
 |  |    /      2                 
 |  |   /      x                  
 |  |  /   1 - --                 
 |  |\/        4                  
 |  \                             
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \begin{cases} - \frac{i}{\sqrt{\frac{x^{2}}{4} - 1}} & \text{for}\: \frac{x^{2}}{4} > 1 \\\frac{1}{\sqrt{1 - \frac{x^{2}}{4}}} & \text{otherwise} \end{cases}\, dx$$
=
=
  1                               
  /                               
 |                                
 |  /                     2       
 |  |     -I             x        
 |  |--------------  for -- > 1   
 |  |     _________      4        
 |  |    /       2                
 |  |   /       x                 
 |  |  /   -1 + --                
 |  |\/         4                 
 |  <                           dx
 |  |      1                      
 |  |-------------   otherwise    
 |  |     ________                
 |  |    /      2                 
 |  |   /      x                  
 |  |  /   1 - --                 
 |  |\/        4                  
 |  \                             
 |                                
/                                 
0                                 
$$\int\limits_{0}^{1} \begin{cases} - \frac{i}{\sqrt{\frac{x^{2}}{4} - 1}} & \text{for}\: \frac{x^{2}}{4} > 1 \\\frac{1}{\sqrt{1 - \frac{x^{2}}{4}}} & \text{otherwise} \end{cases}\, dx$$
Integral(Piecewise((-i/sqrt(-1 + x^2/4), x^2/4 > 1), (1/sqrt(1 - x^2/4), True)), (x, 0, 1))
Numerical answer [src]
1.0471975511966
1.0471975511966
The graph
Integral of 1/sqrt(1-(x/2)^2) dx

    Use the examples entering the upper and lower limits of integration.