Mister Exam

Other calculators

Integral of 1/(sqrt(1-lnx^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 - log (x)    
 |                     
/                      
E                      
$$\int\limits_{e}^{0} \frac{1}{\sqrt{1 - \log{\left(x \right)}^{2}}}\, dx$$
Integral(1/(sqrt(1 - log(x)^2)), (x, E, 0))
The answer [src]
  0                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 - log (x)    
 |                     
/                      
E                      
$$\int\limits_{e}^{0} \frac{1}{\sqrt{1 - \log{\left(x \right)}^{2}}}\, dx$$
=
=
  0                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 - log (x)    
 |                     
/                      
E                      
$$\int\limits_{e}^{0} \frac{1}{\sqrt{1 - \log{\left(x \right)}^{2}}}\, dx$$
Integral(1/sqrt(1 - log(x)^2), (x, E, 0))
Numerical answer [src]
(-3.90286072832712 + 0.489554917170804j)
(-3.90286072832712 + 0.489554917170804j)

    Use the examples entering the upper and lower limits of integration.