Mister Exam

Other calculators

Integral of 1/sqrt(1-cos^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 - cos (x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\sqrt{1 - \cos^{2}{\left(x \right)}}}\, dx$$
Integral(1/(sqrt(1 - cos(x)^2)), (x, 0, 1))
The answer [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 - cos (x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\sqrt{1 - \cos^{2}{\left(x \right)}}}\, dx$$
=
=
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |     _____________   
 |    /        2       
 |  \/  1 - cos (x)    
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\sqrt{1 - \cos^{2}{\left(x \right)}}}\, dx$$
Integral(1/sqrt(1 - cos(x)^2), (x, 0, 1))

    Use the examples entering the upper and lower limits of integration.