1 / | | 1 | ------------- dx | ________ | / 1 | / -- - 1 | / 2 | \/ x | / 0
Integral(1/(sqrt(1/(x^2) - 1)), (x, 0, 1))
/ // _________ \ | || / 2 | 2| | | 1 ||-I*\/ -1 + x for |x | > 1| | ------------- dx = C + |< | | ________ || ________ | | / 1 || / 2 | | / -- - 1 \\ -\/ 1 - x otherwise / | / 2 | \/ x | /
1 / | | / -I*x 2 | |------------ for x > 1 | | _________ | | / 2 | |\/ -1 + x | < dx | | x | |----------- otherwise | | ________ | | / 2 | \\/ 1 - x | / 0
=
1 / | | / -I*x 2 | |------------ for x > 1 | | _________ | | / 2 | |\/ -1 + x | < dx | | x | |----------- otherwise | | ________ | | / 2 | \\/ 1 - x | / 0
Integral(Piecewise((-i*x/sqrt(-1 + x^2), x^2 > 1), (x/sqrt(1 - x^2), True)), (x, 0, 1))
Use the examples entering the upper and lower limits of integration.