0 / | | 1 | ------------- dx | __________ | / 2 | \/ 4 + 3*x | / 0
Integral(1/(sqrt(4 + 3*x^2)), (x, 0, 0))
TrigSubstitutionRule(theta=_theta, func=2*sqrt(3)*tan(_theta)/3, rewritten=sqrt(3)*sec(_theta)/3, substep=ConstantTimesRule(constant=sqrt(3)/3, other=sec(_theta), substep=RewriteRule(rewritten=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), substep=AlternativeRule(alternatives=[URule(u_var=_u, u_func=tan(_theta) + sec(_theta), constant=1, substep=ReciprocalRule(func=_u, context=1/_u, symbol=_u), context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta)], context=(tan(_theta)*sec(_theta) + sec(_theta)**2)/(tan(_theta) + sec(_theta)), symbol=_theta), context=sec(_theta), symbol=_theta), context=sqrt(3)*sec(_theta)/3, symbol=_theta), restriction=True, context=1/(sqrt(3*x**2 + 4)), symbol=x)
Now simplify:
Add the constant of integration:
The answer is:
/ __________ \ | / 2 ___| / ___ | / 3*x x*\/ 3 | | \/ 3 *log| / 1 + ---- + -------| | 1 \\/ 4 2 / | ------------- dx = C + ------------------------------------ | __________ 3 | / 2 | \/ 4 + 3*x | /
Use the examples entering the upper and lower limits of integration.