Mister Exam

Other calculators


1/sqrt(4-9x)^2

Integral of 1/sqrt(4-9x)^2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |         1         
 |  1*------------ dx
 |               2   
 |      _________    
 |    \/ 4 - 9*x     
 |                   
/                    
0                    
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{\left(\sqrt{4 - 9 x}\right)^{2}}\, dx$$
Integral(1/(sqrt(4 - 9*x))^2, (x, 0, 1))
The answer (Indefinite) [src]
  /                                          
 |                              /  _________\
 |        1                2*log\\/ 4 - 9*x /
 | 1*------------ dx = C - ------------------
 |              2                  9         
 |     _________                             
 |   \/ 4 - 9*x                              
 |                                           
/                                            
$$-{{\log \left(4-9\,x\right)}\over{9}}$$
The graph
The answer [src]
nan
$${{\log 4}\over{9}}-{{\log 5}\over{9}}$$
=
=
nan
$$\text{NaN}$$
Numerical answer [src]
(0.0215663846388101 + 0.0j)
(0.0215663846388101 + 0.0j)
The graph
Integral of 1/sqrt(4-9x)^2 dx

    Use the examples entering the upper and lower limits of integration.