1 / | | 1 | 1*------------------- dx | 2 | _____ | \/ 9*x - 6*x + 10 | / 0
Integral(1/((sqrt(9*x))^2 - 6*x + 10), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ / 2 \ | | _____ | | 1 log\\/ 9*x - 6*x + 10/ | 1*------------------- dx = C + ------------------------ | 2 3 | _____ | \/ 9*x - 6*x + 10 | /
log(10) log(13) - ------- + ------- 3 3
=
log(10) log(13) - ------- + ------- 3 3
Use the examples entering the upper and lower limits of integration.