Mister Exam

Other calculators


1/(sqrt9x^2-6x+10)

Integral of 1/(sqrt9x^2-6x+10) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                         
  /                         
 |                          
 |             1            
 |  1*------------------- dx
 |           2              
 |      _____               
 |    \/ 9*x   - 6*x + 10   
 |                          
/                           
0                           
$$\int\limits_{0}^{1} 1 \cdot \frac{1}{- 6 x + \left(\sqrt{9 x}\right)^{2} + 10}\, dx$$
Integral(1/((sqrt(9*x))^2 - 6*x + 10), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of is .

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  /       2           \
 |                                   |  _____            |
 |            1                   log\\/ 9*x   - 6*x + 10/
 | 1*------------------- dx = C + ------------------------
 |          2                                3            
 |     _____                                              
 |   \/ 9*x   - 6*x + 10                                  
 |                                                        
/                                                         
$${{\log \left(3\,x+10\right)}\over{3}}$$
The graph
The answer [src]
  log(10)   log(13)
- ------- + -------
     3         3   
$${{\log 13}\over{3}}-{{\log 10}\over{3}}$$
=
=
  log(10)   log(13)
- ------- + -------
     3         3   
$$- \frac{\log{\left(10 \right)}}{3} + \frac{\log{\left(13 \right)}}{3}$$
Numerical answer [src]
0.087454754822497
0.087454754822497
The graph
Integral of 1/(sqrt9x^2-6x+10) dx

    Use the examples entering the upper and lower limits of integration.