Mister Exam

Other calculators

Integral of 1/(sqrt(4x-1-2x^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                       
  /                       
 |                        
 |           1            
 |  ------------------- dx
 |     ________________   
 |    /              2    
 |  \/  4*x - 1 - 2*x     
 |                        
/                         
0                         
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- 2 x^{2} + \left(4 x - 1\right)}}\, dx$$
Integral(1/(sqrt(4*x - 1 - 2*x^2)), (x, 0, 1))
The answer [src]
  1                        
  /                        
 |                         
 |           1             
 |  -------------------- dx
 |     _________________   
 |    /         2          
 |  \/  -1 - 2*x  + 4*x    
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- 2 x^{2} + 4 x - 1}}\, dx$$
=
=
  1                        
  /                        
 |                         
 |           1             
 |  -------------------- dx
 |     _________________   
 |    /         2          
 |  \/  -1 - 2*x  + 4*x    
 |                         
/                          
0                          
$$\int\limits_{0}^{1} \frac{1}{\sqrt{- 2 x^{2} + 4 x - 1}}\, dx$$
Integral(1/sqrt(-1 - 2*x^2 + 4*x), (x, 0, 1))
Numerical answer [src]
(1.04603829197099 - 0.631165838473228j)
(1.04603829197099 - 0.631165838473228j)

    Use the examples entering the upper and lower limits of integration.