Integral of 1/(sqrt(3x+1)+2) dx
The solution
Detail solution
-
Let u=3x+1.
Then let du=23x+13dx and substitute 2du:
∫3u+62udu
-
The integral of a constant times a function is the constant times the integral of the function:
∫3u+6udu=2∫3u+6udu
-
Rewrite the integrand:
3u+6u=31−3(u+2)2
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫31du=3u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−3(u+2)2)du=−32∫u+21du
-
Let u=u+2.
Then let du=du and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(u+2)
So, the result is: −32log(u+2)
The result is: 3u−32log(u+2)
So, the result is: 32u−34log(u+2)
Now substitute u back in:
323x+1−34log(3x+1+2)
-
Now simplify:
323x+1−34log(3x+1+2)
-
Add the constant of integration:
323x+1−34log(3x+1+2)+constant
The answer is:
323x+1−34log(3x+1+2)+constant
The answer (Indefinite)
[src]
/
| / _________\ _________
| 1 4*log\2 + \/ 3*x + 1 / 2*\/ 3*x + 1
| --------------- dx = C - ---------------------- + -------------
| _________ 3 3
| \/ 3*x + 1 + 2
|
/
∫3x+1+21dx=C+323x+1−34log(3x+1+2)
The graph
2 4*log(4) 4*log(3)
- - -------- + --------
3 3 3
−34log(4)+32+34log(3)
=
2 4*log(4) 4*log(3)
- - -------- + --------
3 3 3
−34log(4)+32+34log(3)
2/3 - 4*log(4)/3 + 4*log(3)/3
Use the examples entering the upper and lower limits of integration.