Mister Exam

Other calculators

Integral of 1/(sqrt(3x+1)+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |    _________       
 |  \/ 3*x + 1  + 2   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sqrt{3 x + 1} + 2}\, dx$$
Integral(1/(sqrt(3*x + 1) + 2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                               
 |                               /      _________\       _________
 |        1                 4*log\2 + \/ 3*x + 1 /   2*\/ 3*x + 1 
 | --------------- dx = C - ---------------------- + -------------
 |   _________                        3                    3      
 | \/ 3*x + 1  + 2                                                
 |                                                                
/                                                                 
$$\int \frac{1}{\sqrt{3 x + 1} + 2}\, dx = C + \frac{2 \sqrt{3 x + 1}}{3} - \frac{4 \log{\left(\sqrt{3 x + 1} + 2 \right)}}{3}$$
The graph
The answer [src]
2   4*log(4)   4*log(3)
- - -------- + --------
3      3          3    
$$- \frac{4 \log{\left(4 \right)}}{3} + \frac{2}{3} + \frac{4 \log{\left(3 \right)}}{3}$$
=
=
2   4*log(4)   4*log(3)
- - -------- + --------
3      3          3    
$$- \frac{4 \log{\left(4 \right)}}{3} + \frac{2}{3} + \frac{4 \log{\left(3 \right)}}{3}$$
2/3 - 4*log(4)/3 + 4*log(3)/3
Numerical answer [src]
0.283090570064292
0.283090570064292

    Use the examples entering the upper and lower limits of integration.