Mister Exam

Other calculators

Integral of 1/(sqrt((2x-5)^5)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |     ____________   
 |    /          5    
 |  \/  (2*x - 5)     
 |                    
/                     
0                     
$$\int\limits_{0}^{1} \frac{1}{\sqrt{\left(2 x - 5\right)^{5}}}\, dx$$
Integral(1/(sqrt((2*x - 5)^5)), (x, 0, 1))
The answer [src]
      ___       ___
  I*\/ 3    I*\/ 5 
- ------- + -------
     27        75  
$$- \frac{\sqrt{3} i}{27} + \frac{\sqrt{5} i}{75}$$
=
=
      ___       ___
  I*\/ 3    I*\/ 5 
- ------- + -------
     27        75  
$$- \frac{\sqrt{3} i}{27} + \frac{\sqrt{5} i}{75}$$
-i*sqrt(3)/27 + i*sqrt(5)/75
Numerical answer [src]
(0.0 - 0.0343357902099612j)
(0.0 - 0.0343357902099612j)

    Use the examples entering the upper and lower limits of integration.