Mister Exam

Other calculators

Integral of 1/(64+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     1      
 |  ------- dx
 |        2   
 |  64 + x    
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{1}{x^{2} + 64}\, dx$$
Integral(1/(64 + x^2), (x, 0, 1))
Detail solution
We have the integral:
  /          
 |           
 |    1      
 | ------- dx
 |       2   
 | 64 + x    
 |           
/            
Rewrite the integrand
   1             1       
------- = ---------------
      2      /     2    \
64 + x       |/-x \     |
          64*||---|  + 1|
             \\ 8 /     /
or
  /            
 |             
 |    1        
 | ------- dx  
 |       2    =
 | 64 + x      
 |             
/              
  
  /             
 |              
 |     1        
 | ---------- dx
 |      2       
 | /-x \        
 | |---|  + 1   
 | \ 8 /        
 |              
/               
----------------
       64       
In the integral
  /             
 |              
 |     1        
 | ---------- dx
 |      2       
 | /-x \        
 | |---|  + 1   
 | \ 8 /        
 |              
/               
----------------
       64       
do replacement
    -x 
v = ---
     8 
then
the integral =
  /                   
 |                    
 |   1                
 | ------ dv          
 |      2             
 | 1 + v              
 |                    
/              atan(v)
------------ = -------
     64           64  
do backward replacement
  /                       
 |                        
 |     1                  
 | ---------- dx          
 |      2                 
 | /-x \                  
 | |---|  + 1             
 | \ 8 /               /x\
 |                 atan|-|
/                      \8/
---------------- = -------
       64             8   
Solution is:
        /x\
    atan|-|
        \8/
C + -------
       8   
The answer (Indefinite) [src]
  /                     /x\
 |                  atan|-|
 |    1                 \8/
 | ------- dx = C + -------
 |       2             8   
 | 64 + x                  
 |                         
/                          
$$\int \frac{1}{x^{2} + 64}\, dx = C + \frac{\operatorname{atan}{\left(\frac{x}{8} \right)}}{8}$$
The graph
The answer [src]
atan(1/8)
---------
    8    
$$\frac{\operatorname{atan}{\left(\frac{1}{8} \right)}}{8}$$
=
=
atan(1/8)
---------
    8    
$$\frac{\operatorname{atan}{\left(\frac{1}{8} \right)}}{8}$$
atan(1/8)/8
Numerical answer [src]
0.0155443743183452
0.0155443743183452

    Use the examples entering the upper and lower limits of integration.