Mister Exam

Other calculators

Integral of 1/(sin(x+y^2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |     /     2\   
 |  sin\x + y /   
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(x + y^{2} \right)}}\, dx$$
Integral(1/sin(x + y^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                     
 |                         /   /     2\\
 |      1                  |   |x   y ||
 | ----------- dx = C + log|tan|- + --||
 |    /     2\             \   \2   2 //
 | sin\x + y /                          
 |                                      
/                                       
$$\int \frac{1}{\sin{\left(x + y^{2} \right)}}\, dx = C + \log{\left(\tan{\left(\frac{x}{2} + \frac{y^{2}}{2} \right)} \right)}$$
The answer [src]
     /   / 2\\      /   /     2\\
     |   |y ||      |   |1   y ||
- log|tan|--|| + log|tan|- + --||
     \   \2 //      \   \2   2 //
$$- \log{\left(\tan{\left(\frac{y^{2}}{2} \right)} \right)} + \log{\left(\tan{\left(\frac{y^{2}}{2} + \frac{1}{2} \right)} \right)}$$
=
=
     /   / 2\\      /   /     2\\
     |   |y ||      |   |1   y ||
- log|tan|--|| + log|tan|- + --||
     \   \2 //      \   \2   2 //
$$- \log{\left(\tan{\left(\frac{y^{2}}{2} \right)} \right)} + \log{\left(\tan{\left(\frac{y^{2}}{2} + \frac{1}{2} \right)} \right)}$$
-log(tan(y^2/2)) + log(tan(1/2 + y^2/2))

    Use the examples entering the upper and lower limits of integration.