Mister Exam

Other calculators

Integral of 1/(sinxcosx^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |        1          
 |  -------------- dx
 |            2      
 |  sin(x)*cos (x)   
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx$$
Integral(1/(sin(x)*cos(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                   
 |                                                                    
 |       1                   1      log(-1 + cos(x))   log(1 + cos(x))
 | -------------- dx = C + ------ + ---------------- - ---------------
 |           2             cos(x)          2                  2       
 | sin(x)*cos (x)                                                     
 |                                                                    
/                                                                     
$$\int \frac{1}{\sin{\left(x \right)} \cos^{2}{\left(x \right)}}\, dx = C + \frac{\log{\left(\cos{\left(x \right)} - 1 \right)}}{2} - \frac{\log{\left(\cos{\left(x \right)} + 1 \right)}}{2} + \frac{1}{\cos{\left(x \right)}}$$
The graph
The answer [src]
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
=
=
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
oo + pi*i/2
Numerical answer [src]
45.0298265862922
45.0298265862922

    Use the examples entering the upper and lower limits of integration.