Mister Exam

Other calculators

  • How to use it?

  • Integral of d{x}:
  • Integral of √(x+4) Integral of √(x+4)
  • Integral of (x+3)e^x Integral of (x+3)e^x
  • Integral of sin³xcosx Integral of sin³xcosx
  • Integral of 1/(x^2+2x+10) Integral of 1/(x^2+2x+10)
  • Identical expressions

  • one /sin^ two (4x)*e^2ctg(4x)
  • 1 divide by sinus of squared (4x) multiply by e squared ctg(4x)
  • one divide by sinus of to the power of two (4x) multiply by e squared ctg(4x)
  • 1/sin2(4x)*e2ctg(4x)
  • 1/sin24x*e2ctg4x
  • 1/sin²(4x)*e²ctg(4x)
  • 1/sin to the power of 2(4x)*e to the power of 2ctg(4x)
  • 1/sin^2(4x)e^2ctg(4x)
  • 1/sin2(4x)e2ctg(4x)
  • 1/sin24xe2ctg4x
  • 1/sin^24xe^2ctg4x
  • 1 divide by sin^2(4x)*e^2ctg(4x)
  • 1/sin^2(4x)*e^2ctg(4x)dx

Integral of 1/sin^2(4x)*e^2ctg(4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                      
  /                      
 |                       
 |       2               
 |      E                
 |  ---------*cot(4*x) dx
 |     2                 
 |  sin (4*x)            
 |                       
/                        
0                        
$$\int\limits_{0}^{1} \frac{e^{2}}{\sin^{2}{\left(4 x \right)}} \cot{\left(4 x \right)}\, dx$$
Integral((E^2/sin(4*x)^2)*cot(4*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                       
 |                                        
 |      2                            2    
 |     E                            e     
 | ---------*cot(4*x) dx = C - -----------
 |    2                             2     
 | sin (4*x)                   8*sin (4*x)
 |                                        
/                                         
$$\int \frac{e^{2}}{\sin^{2}{\left(4 x \right)}} \cot{\left(4 x \right)}\, dx = C - \frac{e^{2}}{8 \sin^{2}{\left(4 x \right)}}$$
The graph
The answer [src]
nan
$$\text{NaN}$$
=
=
nan
$$\text{NaN}$$
nan
Numerical answer [src]
1.05682556501073e+37
1.05682556501073e+37

    Use the examples entering the upper and lower limits of integration.