Mister Exam

Other calculators

Integral of 1/(sin3x+6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |  sin(3*x) + 6   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\sin{\left(3 x \right)} + 6}\, dx$$
Integral(1/(sin(3*x) + 6), (x, 0, 1))
The answer (Indefinite) [src]
                                  /        /  pi   3*x\       /             ____    /3*x\\\
                                  |        |- -- + ---|       |  ____   6*\/ 35 *tan|---|||
  /                          ____ |        |  2     2 |       |\/ 35                \ 2 /||
 |                       2*\/ 35 *|pi*floor|----------| + atan|------ + -----------------||
 |      1                         \        \    pi    /       \  35             35       //
 | ------------ dx = C + ------------------------------------------------------------------
 | sin(3*x) + 6                                         105                                
 |                                                                                         
/                                                                                          
$$\int \frac{1}{\sin{\left(3 x \right)} + 6}\, dx = C + \frac{2 \sqrt{35} \left(\operatorname{atan}{\left(\frac{6 \sqrt{35} \tan{\left(\frac{3 x}{2} \right)}}{35} + \frac{\sqrt{35}}{35} \right)} + \pi \left\lfloor{\frac{\frac{3 x}{2} - \frac{\pi}{2}}{\pi}}\right\rfloor\right)}{105}$$
The graph
The answer [src]
           /          /  ____\\            /          /  ____       ____         \\
      ____ |          |\/ 35 ||       ____ |          |\/ 35    6*\/ 35 *tan(3/2)||
  2*\/ 35 *|-pi + atan|------||   2*\/ 35 *|-pi + atan|------ + -----------------||
           \          \  35  //            \          \  35             35       //
- ----------------------------- + -------------------------------------------------
               105                                       105                       
$$\frac{2 \sqrt{35} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{35}}{35} + \frac{6 \sqrt{35} \tan{\left(\frac{3}{2} \right)}}{35} \right)}\right)}{105} - \frac{2 \sqrt{35} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{35}}{35} \right)}\right)}{105}$$
=
=
           /          /  ____\\            /          /  ____       ____         \\
      ____ |          |\/ 35 ||       ____ |          |\/ 35    6*\/ 35 *tan(3/2)||
  2*\/ 35 *|-pi + atan|------||   2*\/ 35 *|-pi + atan|------ + -----------------||
           \          \  35  //            \          \  35             35       //
- ----------------------------- + -------------------------------------------------
               105                                       105                       
$$\frac{2 \sqrt{35} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{35}}{35} + \frac{6 \sqrt{35} \tan{\left(\frac{3}{2} \right)}}{35} \right)}\right)}{105} - \frac{2 \sqrt{35} \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{35}}{35} \right)}\right)}{105}$$
-2*sqrt(35)*(-pi + atan(sqrt(35)/35))/105 + 2*sqrt(35)*(-pi + atan(sqrt(35)/35 + 6*sqrt(35)*tan(3/2)/35))/105
Numerical answer [src]
0.150364406640181
0.150364406640181

    Use the examples entering the upper and lower limits of integration.