Mister Exam

Other calculators

Integral of 1/(shxch^4x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |              4      
 |  sinh(x)*cosh (x)   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\sinh{\left(x \right)} \cosh^{4}{\left(x \right)}}\, dx$$
Integral(1/(sinh(x)*cosh(x)^4), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                       /    /x\\                                     2/x\                                       4/x\                                6/x\    /    /x\\                          2/x\    /    /x\\                          4/x\    /    /x\\         
 |                                                                                   3*log|tanh|-||                              12*tanh |-|                                12*tanh |-|                          3*tanh |-|*log|tanh|-||                    9*tanh |-|*log|tanh|-||                    9*tanh |-|*log|tanh|-||         
 |        1                                     8                                         \    \2//                                      \2/                                        \2/                                 \2/    \    \2//                           \2/    \    \2//                           \2/    \    \2//         
 | ---------------- dx = C + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ----------------------------------------
 |             4                       6/x\         2/x\         4/x\             6/x\         2/x\         4/x\             6/x\         2/x\         4/x\             6/x\         2/x\         4/x\             6/x\         2/x\         4/x\             6/x\         2/x\         4/x\             6/x\         2/x\         4/x\
 | sinh(x)*cosh (x)          3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|   3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|   3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|   3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|   3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|   3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|   3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|
 |                                      \2/          \2/          \2/              \2/          \2/          \2/              \2/          \2/          \2/              \2/          \2/          \2/              \2/          \2/          \2/              \2/          \2/          \2/              \2/          \2/          \2/
/                                                                                                                                                                                                                                                                                                                                      
$$\int \frac{1}{\sinh{\left(x \right)} \cosh^{4}{\left(x \right)}}\, dx = C + \frac{3 \log{\left(\tanh{\left(\frac{x}{2} \right)} \right)} \tanh^{6}{\left(\frac{x}{2} \right)}}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3} + \frac{9 \log{\left(\tanh{\left(\frac{x}{2} \right)} \right)} \tanh^{4}{\left(\frac{x}{2} \right)}}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3} + \frac{9 \log{\left(\tanh{\left(\frac{x}{2} \right)} \right)} \tanh^{2}{\left(\frac{x}{2} \right)}}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3} + \frac{3 \log{\left(\tanh{\left(\frac{x}{2} \right)} \right)}}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3} + \frac{12 \tanh^{4}{\left(\frac{x}{2} \right)}}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3} + \frac{12 \tanh^{2}{\left(\frac{x}{2} \right)}}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3} + \frac{8}{3 \tanh^{6}{\left(\frac{x}{2} \right)} + 9 \tanh^{4}{\left(\frac{x}{2} \right)} + 9 \tanh^{2}{\left(\frac{x}{2} \right)} + 3}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
43.4170994776155
43.4170994776155

    Use the examples entering the upper and lower limits of integration.