Integral of 1/(shxch^4x) dx
The solution
The answer (Indefinite)
[src]
/ / /x\\ 2/x\ 4/x\ 6/x\ / /x\\ 2/x\ / /x\\ 4/x\ / /x\\
| 3*log|tanh|-|| 12*tanh |-| 12*tanh |-| 3*tanh |-|*log|tanh|-|| 9*tanh |-|*log|tanh|-|| 9*tanh |-|*log|tanh|-||
| 1 8 \ \2// \2/ \2/ \2/ \ \2// \2/ \ \2// \2/ \ \2//
| ---------------- dx = C + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ---------------------------------------- + ----------------------------------------
| 4 6/x\ 2/x\ 4/x\ 6/x\ 2/x\ 4/x\ 6/x\ 2/x\ 4/x\ 6/x\ 2/x\ 4/x\ 6/x\ 2/x\ 4/x\ 6/x\ 2/x\ 4/x\ 6/x\ 2/x\ 4/x\
| sinh(x)*cosh (x) 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-| 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-| 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-| 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-| 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-| 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-| 3 + 3*tanh |-| + 9*tanh |-| + 9*tanh |-|
| \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/ \2/
/
∫sinh(x)cosh4(x)1dx=C+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+33log(tanh(2x))tanh6(2x)+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+39log(tanh(2x))tanh4(2x)+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+39log(tanh(2x))tanh2(2x)+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+33log(tanh(2x))+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+312tanh4(2x)+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+312tanh2(2x)+3tanh6(2x)+9tanh4(2x)+9tanh2(2x)+38
The graph
Use the examples entering the upper and lower limits of integration.