Mister Exam

Other calculators

Integral of 1/(shxch^2x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                    
  /                    
 |                     
 |         1           
 |  ---------------- dx
 |              2      
 |  sinh(x)*cosh (x)   
 |                     
/                      
0                      
$$\int\limits_{0}^{1} \frac{1}{\sinh{\left(x \right)} \cosh^{2}{\left(x \right)}}\, dx$$
Integral(1/(sinh(x)*cosh(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                            /    /x\\       2/x\    /    /x\\
 |                                          log|tanh|-||   tanh |-|*log|tanh|-||
 |        1                       2            \    \2//        \2/    \    \2//
 | ---------------- dx = C + ------------ + ------------ + ---------------------
 |             2                     2/x\           2/x\                2/x\    
 | sinh(x)*cosh (x)          1 + tanh |-|   1 + tanh |-|        1 + tanh |-|    
 |                                    \2/            \2/                 \2/    
/                                                                               
$$\int \frac{1}{\sinh{\left(x \right)} \cosh^{2}{\left(x \right)}}\, dx = C + \frac{\log{\left(\tanh{\left(\frac{x}{2} \right)} \right)} \tanh^{2}{\left(\frac{x}{2} \right)}}{\tanh^{2}{\left(\frac{x}{2} \right)} + 1} + \frac{\log{\left(\tanh{\left(\frac{x}{2} \right)} \right)}}{\tanh^{2}{\left(\frac{x}{2} \right)} + 1} + \frac{2}{\tanh^{2}{\left(\frac{x}{2} \right)} + 1}$$
The graph
The answer [src]
oo
$$\infty$$
=
=
oo
$$\infty$$
oo
Numerical answer [src]
43.6597107553114
43.6597107553114

    Use the examples entering the upper and lower limits of integration.