Mister Exam

Other calculators

Integral of 1/secx+cscx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /  1            \   
 |  |------ + csc(x)| dx
 |  \sec(x)         /   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(\csc{\left(x \right)} + \frac{1}{\sec{\left(x \right)}}\right)\, dx$$
Integral(1/sec(x) + csc(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    1. Don't know the steps in finding this integral.

      But the integral is

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                        
 |                                                         
 | /  1            \                                       
 | |------ + csc(x)| dx = C - log(cot(x) + csc(x)) + sin(x)
 | \sec(x)         /                                       
 |                                                         
/                                                          
$$\int \left(\csc{\left(x \right)} + \frac{1}{\sec{\left(x \right)}}\right)\, dx = C - \log{\left(\cot{\left(x \right)} + \csc{\left(x \right)} \right)} + \sin{\left(x \right)}$$
The graph
The answer [src]
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
=
=
     pi*I
oo + ----
      2  
$$\infty + \frac{i \pi}{2}$$
oo + pi*i/2
Numerical answer [src]
45.0204818534191
45.0204818534191

    Use the examples entering the upper and lower limits of integration.