Integral of 1/(1000-2y) dy
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=1000−2y.
Then let du=−2dy and substitute −2du:
∫(−2u1)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=−2∫u1du
-
The integral of u1 is log(u).
So, the result is: −2log(u)
Now substitute u back in:
−2log(1000−2y)
Method #2
-
Rewrite the integrand:
1000−2y1=−2(y−500)1
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2(y−500)1)dy=−2∫y−5001dy
-
Let u=y−500.
Then let du=dy and substitute du:
∫u1du
-
The integral of u1 is log(u).
Now substitute u back in:
log(y−500)
So, the result is: −2log(y−500)
Method #3
-
Rewrite the integrand:
1000−2y1=−2y−10001
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2y−10001)dy=−∫2y−10001dy
-
Let u=2y−1000.
Then let du=2dy and substitute 2du:
∫2u1du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u1du=2∫u1du
-
The integral of u1 is log(u).
So, the result is: 2log(u)
Now substitute u back in:
2log(2y−1000)
So, the result is: −2log(2y−1000)
-
Add the constant of integration:
−2log(1000−2y)+constant
The answer is:
−2log(1000−2y)+constant
The answer (Indefinite)
[src]
/
|
| 1 log(1000 - 2*y)
| ---------- dy = C - ---------------
| 1000 - 2*y 2
|
/
∫1000−2y1dy=C−2log(1000−2y)
The graph
log(1000) log(998)
--------- - --------
2 2
−2log(998)+2log(1000)
=
log(1000) log(998)
--------- - --------
2 2
−2log(998)+2log(1000)
Use the examples entering the upper and lower limits of integration.