Mister Exam

Other calculators

Integral of 1/(1000-2y) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |      1        
 |  ---------- dy
 |  1000 - 2*y   
 |               
/                
0                
$$\int\limits_{0}^{1} \frac{1}{1000 - 2 y}\, dy$$
Integral(1/(1000 - 2*y), (y, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of is .

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                   
 |                                    
 |     1               log(1000 - 2*y)
 | ---------- dy = C - ---------------
 | 1000 - 2*y                 2       
 |                                    
/                                     
$$\int \frac{1}{1000 - 2 y}\, dy = C - \frac{\log{\left(1000 - 2 y \right)}}{2}$$
The graph
The answer [src]
log(1000)   log(998)
--------- - --------
    2          2    
$$- \frac{\log{\left(998 \right)}}{2} + \frac{\log{\left(1000 \right)}}{2}$$
=
=
log(1000)   log(998)
--------- - --------
    2          2    
$$- \frac{\log{\left(998 \right)}}{2} + \frac{\log{\left(1000 \right)}}{2}$$
log(1000)/2 - log(998)/2
Numerical answer [src]
0.00100100133533654
0.00100100133533654

    Use the examples entering the upper and lower limits of integration.