1 / | | 1 | -------- dx | 2*n | 1 + x | / 0
Integral(1/(1 + x^(2*n)), (x, 0, 1))
/ / 1 \ / 2*n pi*I 1 \ | x*Gamma|---|*lerchphi|x *e , 1, ---| | 1 \2*n/ \ 2*n/ | -------- dx = C + ----------------------------------------- | 2*n 2 / 1 \ | 1 + x 4*n *Gamma|1 + ---| | \ 2*n/ /
/ 1 \ / pi*I 1 \
Gamma|---|*lerchphi|e , 1, ---|
\2*n/ \ 2*n/
----------------------------------
2 / 1 \
4*n *Gamma|1 + ---|
\ 2*n/
=
/ 1 \ / pi*I 1 \
Gamma|---|*lerchphi|e , 1, ---|
\2*n/ \ 2*n/
----------------------------------
2 / 1 \
4*n *Gamma|1 + ---|
\ 2*n/
gamma(1/(2*n))*lerchphi(exp_polar(pi*i), 1, 1/(2*n))/(4*n^2*gamma(1 + 1/(2*n)))
Use the examples entering the upper and lower limits of integration.