Mister Exam

Other calculators

Integral of 1/(1+sqrt(3x-2)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  6                   
  /                   
 |                    
 |         1          
 |  --------------- dx
 |        _________   
 |  1 + \/ 3*x - 2    
 |                    
/                     
1                     
$$\int\limits_{1}^{6} \frac{1}{\sqrt{3 x - 2} + 1}\, dx$$
Integral(1/(1 + sqrt(3*x - 2)), (x, 1, 6))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Integrate term-by-term:

        1. The integral of a constant is the constant times the variable of integration:

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. Let .

            Then let and substitute :

            1. The integral of is .

            Now substitute back in:

          So, the result is:

        The result is:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                               
 |                               /      _________\       _________
 |        1                 2*log\1 + \/ 3*x - 2 /   2*\/ 3*x - 2 
 | --------------- dx = C - ---------------------- + -------------
 |       _________                    3                    3      
 | 1 + \/ 3*x - 2                                                 
 |                                                                
/                                                                 
$$\int \frac{1}{\sqrt{3 x - 2} + 1}\, dx = C + \frac{2 \sqrt{3 x - 2}}{3} - \frac{2 \log{\left(\sqrt{3 x - 2} + 1 \right)}}{3}$$
The graph
The answer [src]
    2*log(5)   2*log(2)
2 - -------- + --------
       3          3    
$$- \frac{2 \log{\left(5 \right)}}{3} + \frac{2 \log{\left(2 \right)}}{3} + 2$$
=
=
    2*log(5)   2*log(2)
2 - -------- + --------
       3          3    
$$- \frac{2 \log{\left(5 \right)}}{3} + \frac{2 \log{\left(2 \right)}}{3} + 2$$
2 - 2*log(5)/3 + 2*log(2)/3
Numerical answer [src]
1.3891395120839
1.3891395120839

    Use the examples entering the upper and lower limits of integration.