6 / | | 1 | --------------- dx | _________ | 1 + \/ 3*x - 2 | / 1
Integral(1/(1 + sqrt(3*x - 2)), (x, 1, 6))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | / _________\ _________ | 1 2*log\1 + \/ 3*x - 2 / 2*\/ 3*x - 2 | --------------- dx = C - ---------------------- + ------------- | _________ 3 3 | 1 + \/ 3*x - 2 | /
2*log(5) 2*log(2) 2 - -------- + -------- 3 3
=
2*log(5) 2*log(2) 2 - -------- + -------- 3 3
2 - 2*log(5)/3 + 2*log(2)/3
Use the examples entering the upper and lower limits of integration.